Intégration numérique

Intégration numérique


Ce document présente quelques méthodes classiques de calcul numérique d'intégrales. Il est destiné à des étudiants de licence.

I Introduction

II Formules de quadrature et leur ordre

III Mise en oeuvre sur Matlab

IV Etude de l'erreur d'une méthode de quadrature

V Exemples de calcul numérique de l'ordre

VI Bibliographie

VII Exercices


Vous trouverez ici le fichier pdf de ce document docintegnum.pdf

I Introduction

Intégration numérique → I Introduction

I-1 Problème étudié

Intégration numériqueI Introduction → I-1 Problème étudié
Soit une fonction intégrable. Nous nous intéressons au calcul de son intégrale sur :
Dans ce chapitre on présente la théorie des quelques méthodes classiques de calcul numérique de I(f). Ces méthodes sont appelées méthodes de quadrature . Pour chaque méthode, on s'intéresse à son ordre, à l'étude de sa convergence et à l'étude de son erreur de convergence. On développe aussi quelques idées nécessaires à l'écriture d'un programme numérique pour le calcul de I(f).

I-2 Notations et définitions

Intégration numériqueI Introduction → I-2 Notations et définitions
Soit bornée et soit
une subdivision de de pas
On pose:

Définition [Intégrale de Riemann]

La fonction f est dite Riemann intégrable si . Dans ce cas, on note le réel et on l'appelle l'intégrale de Riemann associée à f.

Remarque

  1. Toute fonction continue par morceaux est Riemann intégrable.
  2. Toute fonction monotone est Riemann intégrable.

I-3 Résultats fondamentaux

Intégration numériqueI Introduction → I-3 Résultats fondamentaux

Proposition

Si est Riemann intégrable, alors
ou d'une manière équivalente

Remarque

Si est continue alors

Théorème

Si est continue alors
et d'une façon plus générale

II Formules de quadrature et leur ordre

Intégration numérique → II Formules de quadrature et leur ordre

II-1 Idée de base

La plupart des algorithmes numériques procèdent comme suit : on subdivise l'intervalle en plusieurs sous-intervalles et on utilise le fait que
De cette manière, on est amené au calcul de plusieurs intégrales pour lesquelles la longueur de l'intervalle d'intégration est relativement petite. Prenons une de ces intégrales, notons la longueur de l'intervalle et g(t) = f(xi + t hi). Un changement de variable nous donne alors:

Il reste alors à calculer une approximation de

II-2 Méthode des rectangles à gauche

Intégration numériqueII Formules de quadrature et leur ordre → II-2 Méthode des rectangles à gauche